Image retrieval with embedded sub-class information using Gaussian mixture models
نویسندگان
چکیده
This paper describes content-based image retrieval techniques within the relevance feedback framework. The Gaussian mixture model (GMM) is used to characterize sub-class information to increase retrieval accuracy and reduce number of interactions during a query session. The implementation of GMM is based on the radial basis function using a new learning algorithm that can cope with small training samples in the relevance feedback cycle. The proposed retrieval system is successfully applied to image databases of very large sizes, and experimental results show that the proposed system competes favorably with the other recently proposed interactive systems.
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملMulti-Class Labeling Improved by Random Forest for Automatic Image Annotation
Recently automatic image annotation (AIA) has been arising as a key technology to support image retrieval. The representative algorithm is Semantic Multiclass Labeling (SML [1]), which constructs a parametric generative model of a distribution of local image features in a class with a gaussian mixture model. Although SML shows good accuracy, SML has not been used widely because of its long trai...
متن کاملCompressed Domain Image Retrieval Using JPEG2000 and Gaussian Mixture Models
We describe and compare three probabilistic ways to perform Content Based Image Retrieval (CBIR) in compressed domain using images in JPEG2000 format. Our main focus are arbitrary non-uniformly textured color images, as can be found, e.g., in home user image collections. JPEG2000 offers data that can be easily transferred into features for image retrieval. Thus, when converting images to JPEG20...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003